Photochemical Reduction of Bis-(2,9-dimethyl-1,10-phenanthroline)copper(II)

By S. SUNDARARAJAN and E. L. WEHRY*

(Department of Chemistry, Indiana University, Bloomington, Indiana 47401)

Summary Bis-(2,9-dimethyl-1,10-phenanthroline)copper-(II) undergoes photoreduction in acidic aqueous media; an apparent correlation of photochemical efficiency with the spectral location of a charge-transfer excited state is reported.

WHILE photochemical oxidation-reduction processes in co-ordination compounds have received considerable attention,¹ few investigations concerning complexes of metals other than Co³⁺ have appeared. We report photochemical reduction of bis-(2,9-dimethyl-1,10-phenanthroline)copper-(II), Cu(dmp)₂OH₂²⁺.

FIGURE 1. Variation of quantum yield for $Cu(dmp)_2$ ⁺ formation with benzoate concentration.

Dissolution of salts $[Cu(dmp)_2X]X$ (X = Cl⁻ or Br⁻) in aqueous media (pH = 5.8, adjusted with concentrated HClO₄) is followed by rapid thermal release of the coordinated anion, forming an aquo-complex, presumably $Cu(dmp)_2OH_2^{2+.2}$ Photolysis of $Cu(dmp)_2OH_2^{2+}$ leads to formation of the well-known red complex $Cu(dmp)_2^{+}$, together with a decrease in pH. Alteration of the anion has no significant effect upon observed quantum yields of photoreduction.

It is postulated that this photoreduction proceeds *via* simple homolytic cleavage of the co-ordinated water molecule:

$$Cu(dmp)_{2}OH_{2}^{2+} \longrightarrow Cu(dmp)_{2}^{+} + H^{+} + OH \qquad (1)$$

$$h_{\nu}$$

In the presence of benzoate, a well-known scavenger of hydroxyl radicals, photolysis of $Cu(dmp)_2OH_2^{2+}$ leads to formation of salicylate, as indicated by formation of its characteristic red complex³ with Fe³⁺. As seen in Figure 1, the quantum yield for formation of $Cu(dmp)_2^+$ is enhanced in the presence of small quantities of benzoate, eventually reaching a limiting value at higher scavenger concentrations.

The quantum yield for appearance of $Cu(dmp)^{\frac{1}{2}}_{\frac{1}{2}}$ has been determined as a function of incident frequency, using incident power values of $(1.05 \pm 0.10) \times 10^{14}$ photons sec⁻¹. The results are indicated in Figure 2, along with the electronic absorption spectra of $Cu(dmp)_{2}OH_{2}^{2+}$ and

FIGURE 2. Variation of Φ for Cu(dmp)₂⁺ formation with incident frequency (right ordinate); electronic spectra of Cu(dmp)₂OH₂²⁺ and Cu(dmp)₂⁺ (left ordinate). Charge-transfer band in Cu(dmp)₂OH₂²⁺ indicated by arrow.

 $\operatorname{Cu}(\operatorname{dmp})_2^+$. A very sharp decrease of Φ is noted at approximately 27,700 cm⁻¹. In an assignment of the electronic absorption spectrum of bis-(2,9-dimethylphenanthroline) chelates of Cu^{2+} , Williams⁴ postulated the existence of a $\pi \rightarrow d$ (ligand \rightarrow metal) charge-transfer band at 28,600 cm⁻¹. Hence, there is an extremely close correlation between photoreduction activity of $\operatorname{Cu}(\operatorname{dmp})_2\operatorname{OH}_2^{2+}$ and the assigned position of the lowest spin-allowed charge-transfer excited

state. That Φ is essentially constant at all frequencies greater than 27,700 cm⁻¹ may indicate that the chargetransfer state is indeed reactive, with internal conversion thereto from higher (π,π^*) intraligand states being highly efficient. It is also noteworthy that excitation in the $d \rightarrow d$ absorption region (12,000-17,000 cm⁻¹) does not effect detectable photoreduction of $Cu(dmp)_2OH_2^{2+}$. This result strongly implies that internal conversion from the lowest spin-allowed charge-transfer state into lower-lying doublet ligand-field excited states is not rapid with respect to the photoreduction process.

Cu(dmp)₂⁺ is resistant to photochemical oxidation under all experimental conditions. The Cu-(dmp) system is thus analogous to Fe(phen)₃³⁺-Fe(phen)₃²⁺, wherein the former undergoes photochemical reduction⁵ but the latter is resistant to photo-oxidation.

This work was supported in part by the U.S. Public Health Service.

(Received, December 22nd, 1969; Com. 1935.)

¹E. L. Wehry, *Quart Rev.*, 1967, 21, 213; A. W. Adamson, W. L. Waltz, E. Zinato, D. W. Watts, P. D. Fleischauer, and R. D. Lindholm, *Chem. Rev.*, 1968, 68, 541.

 ² J. R. Hall, N. K. Marchant, and R. A. Plowman, Austral. J. Chem., 1963, 16, 34.
 ³ H. G. C. Bates and N. Uri, J. Amer. Chem. Soc., 1953, 75, 2754.
 ⁴ R. J. P. Williams, in "The Biochemistry of Copper," eds. J. Peisach, P. Aisen, and W. E. Blumberg, Academic Press, New York, 1966, p. 131.
 ⁵ J. H. Baxendale and N. K. Bridge, J. Phys. Chem., 1955, 59, 783.